Local ionic liquid environment at a modified iron porphyrin catalyst enhances electrocatalytic performance of CO₂ to CO reduction in water

A. Khadhraoui,^a Z. Halime ,^a A. Aukauloo^a

^a Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Équipe Chimie Inorganique, Rue Doyen G. Poiteu, Université Paris-Sud, Orsay 91405, France <u>asma.khadhraoui@u-psud.fr</u>

Limiting CO_2 emission in our atmosphere is one of the most important environmental, energetic and scientific contemporary challenges. To mitigate the concentration of CO_2 in our atmosphere, a gradual replacement of fossil fuel by more sustainable energy sources should be accompanied by the capture, separation, storage and utilization of CO_2 to produce zero-carbon fuel such as methane, methanol, ethylene, etc.¹

Because of the high thermodynamic stability of the CO_2 molecule, chemists have developed several catalysts to promote its transformation. Metalloporphyrins, particularly those of iron and cobalt,² are among the most efficient molecular catalysts for converting CO_2 through redox reactions. However, the reduction of CO_2 requires significant energy inputs and the use of acids as a proton source as well as organic solvents.

Inspired by the active site of enzymes capable of performing CO_2 reduction, we develop new modified iron porphyrins with a local ionic liquid environment to enhance the electrocatalytic performance of CO_2 to CO reduction (Fig.1). As a result, our new catalyst can selectively reduce CO_2 to CO in water and without any external source of protons. This original concept enabled us to optimize the energy costs of the capture, activation and transformation of the CO_2 molecule.³

Figure 1 electrocatalytic reduction of CO₂

- 2 C. Costentin, S. Drouet, M. Robert, J. M. Savéant, Science, 2012, 338, 90.
- 3 A. Khadhraoui, P. Gotico, B. Boitrel, W. Leibl, Z. Halime, A. Aukauloo, Chem. Commun., 2018, 54, 11630.

¹ G. A. Olah, Angew. Chem. Int. Ed., 2005, 44, 2636.