Tetrakis(4-carboxyphenyl)stannane - a Versatile Building Block for Heterometallic Coordination Polymers

A. Savaa, T. Mocanub, C. Silvestru,c,* M. Andruhb, S. Shovac

aDepartment of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
bInorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, 25 Dumbrava Roșie, 020464 Bucharest, Romania
c“Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Vodă, 700487 Iaşi, Romania
cristian.silvestru@ubbcluj.ro

In spite of limitations mainly due to air or moisture sensitivity, organometallic species can be used as exo-bi- or multidentate spacers in coordination chemistry to result in heterometallic polymers.1 However, the use of main group organometallics as building blocks is largely undeveloped. We have reported recently on the use of bis(4-pyridyl)mercury(II)2,3 and triphenylbismuth(V) derivatives of isonicotinic and nicotinic acids1 as neutral organometallic ditopic linkers to build coordination polymers.

As an extension of our work on heterometallic coordination polymers we investigated the potential of the tetrahedral organometallic tecton \([\text{Sn(C}_6\text{H}_4\text{CO}_2\text{-4})_4]^{4-}\) (L) as building block. We report here on several new coordination polymers of different dimensionalities obtained by reacting metal salts or complexes with \(\text{Sn[C}_6\text{H}_4\text{C(O)OH-4}}\) in basic or acidic media, \(i.e.\) \([\text{Co(H}_2\text{L})(\text{CH}_3\text{OH})_4] (1-D), [\text{Zn(cyclam)}]_2(L)\) and \([\text{Cu(phen)}]_2(\text{H}_2\text{O})(L)\) (2-D), or \([\text{M}_2(L)(\text{DMF})_2(\text{H}_2\text{O})] (\text{M} = \text{Zn, Cd, M}_2(L)(\text{CH}_3\text{OH})_3 (\text{M} = \text{Co, Zn, [Cu}_2(\text{H}_2\text{O})_2(L)\) and \([\text{Na}_2\text{M}(L)] (3-D) (see Figure 1).

![Figure 1 Types of coordination polymers based on the organometallic tecton \([\text{Sn(C}_6\text{H}_4\text{CO}_2\text{-4})_4]^{4-}\).](image)